Syntax for item analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | ***This item analysis syntax follows the example from the SPSS White Paper on the same subject. ***Score each record, assuming key is the last record, resulting in an array of 1s and 0s. * Syntax fixed by Raynald Levesque 2003/01/27. * (Of course syntax could be automated so that it would work, without any modifications, for any number of questions). PRESERVE. GET FILE='c:\\temp\\ItemAnalysisExercise.sav'. SET TVARS=LABELS /TNUMBERS=LABELS. COMPUTE ID=$CASENUM. SORT CASES BY ID (D). DO REPEAT key=#1 TO #10/ q=q1 TO q10. + DO IF $CASENUM=1. + COMPUTE key=q. + ELSE. + COMPUTE q=(q=key). + END IF. END REPEAT. XSAVE OUTFILE "c:\\temp\\SCORED.sav"/DROP=id. EXECUTE . GET FILE="c:\\temp\\SCORED.sav.". ***Delete the record containing the key. SORT CASES BY name (A). SELECT IF(name NE 'key'). ***Compute the score for each record. COMPUTE score=MEAN(q1 to q10)*100. ***Compute and append the ranking of each score. RANK VARIABLES=score (D) /NTILES (3) /PRINT=NO /TIES=MEAN . ***Clean up. RENAME VARIABLES (nscore=group). FORMATS score (f8.0). VALUE LABELS group 1 'high' 2 'middle' 3 'low'. SAVE OUTFILE 'c:\\temp\\scored.sav'. ***run against the resulting scored data to produce the output seen in Figures 3-4. AGGREGATE OUTFILE=* /BREAK=group /q1 'percentage right q1'=MEAN(q1) /q2 'percentage right q2'=MEAN(q2) /q3 'percentage right q3'=MEAN(q3) /q4 'percentage right q4'=MEAN(q4) /q5 'percentage right q5'=MEAN(q5) /q6 'percentage right q6'=MEAN(q6) /q7 'percentage right q7'=MEAN(q7) /q8 'percentage right q8'=MEAN(q8) /q9 'percentage right q9'=MEAN(q9) /q10 'percentage right q10'=MEAN(q10). FLIP VARIABLES=q1 TO q10 /NEWNAMES=group. RENAME VARIABLES (case_lbl=qnum) (v1=high) (v2=middle) (v3=low). COMPUTE index=high - low. FORMATS high TO index (F4.2). SUMMARIZE /TABLES=qnum high middle low index /FORMAT=VALIDLIST NOCASENUM TOTAL /TITLE='Index of Discrimination' /MISSING=VARIABLE /CELLS=NONE. ***Compute - among other things - corrected point biserial correlations. GET FILE 'c:\\temp\\scored.sav'. RELIABILITY /VARIABLES=q1 TO q10 /FORMAT=NOLABELS /SCALE(ALPHA)=ALL/MODEL=ALPHA /STATISTICS=DESCRIPTIVE CORR /SUMMARY=TOTAL MEANS. *** Produce a table similar to that in figure 5 ***Item distracter analysis setup. GET FILE='c:\\temp\\ItemAnalysisExercise.sav'. SELECT IF name="key". FORMATS q1 TO q10(F1). *//////////. DEFINE !keys(nbq=!TOKENS(1)) /* This macro adds the * after the correct answer number */ WRITE OUTFILE='c:\\temp\\define labels.sps' !DO !cnt=1 !TO !nbq /!QUOTE(!CONCAT('ADD VALUE LABEL q',!cnt," "))!CONCAT(q,!cnt)'"'!CONCAT(q,!cnt)'*".' !DOEND. EXECUTE. !ENDDEFINE. *//////////. SET MPRINT=yes. !keys nbq=10. GET FILE='c:\\temp\\ItemAnalysisExercise.sav'. SELECT IF (name ne 'key'). MATCH FILES/FILE=* /FILE='C:\\TEMP\\scored.sav' /RENAME (name q1 TO q10= d0 TO d10) /DROP=d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10. VARIABLE LABELS group 'Percentage answering distracter'. VALUE LABELS group 1 'high 1/3' 2 'middle 1/3' 3 'low 1/3'. INCLUDE 'c:\\temp\\define labels.sps'. CROSSTABS /TABLES=group BY q1 TO q10 /FORMAT=AVALUE TABLES /CELLS=ROW. RESTORE. |
Related pages
...
Navigate from here